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ABSTRACT

In order to understand the effects of cumulus convection on large-scale atmospheric motions,

heat and moisture budget analyses are often performed using data from an array of radiosonde stations.

Ever since the pioneering work of Yanai et al. (1973), such budgets have been based on approximate

forms of moist thermodynamics. This paper presents an improved form of moist thermodynamics for

such budget studies.

1. Introduction

Ever since the pioneering work of Yanai et al. (1973), heat and moisture budget studies, and their interpretation

in terms of the convective flux of moist static energy, have been performed with approximate forms of moist thermo-

dynamics. For example, such studies often begin with the assumption that moist static energy h = cpaT + gz + Lq,

defined with the latent heat of condensation L assumed constant, is materially conserved (except for radiative effects).

This misses important physical effects of ice, such as the formation of stable layers near the melting level. This is

only one of several consequences of using this approximate form of moist thermodynamics. While the effects of

approximate moist thermodynamics are generally small at a given time, their accumulated effects over longer periods

can be substantial. This was apparent to Johnson and Ciesielski (2000) in computing long-term averaged budget

residuals such as precipitation and column average radiation for TOGA COARE.

Since its introduction in the late 1990s, the constrained variational analysis (CVA) approach to atmospheric

budgets has proved to be an invaluable tool for computing accurate large-scale forcing fields from sounding data

networks (Zhang and Lin 1997). In this method the atmospheric state variables, typically derived from sounding

data, are adjusted in a minimal way comparable to measurement uncertainty to conserve vertical constraints of mass,

moisture, static energy and momentum. In so doing, CVA produces fields that are consistent with these constraints.

These additional constraints result in significant improvements in budget diagnostics especially during periods when

the original sounding data are missing or of questionable quality. While the effects of measurement and sampling

errors in sounding data (Mapes et al. 2003) are effectively minimized with CVA, accurate large-scale diagnostics in

this method are dependent on reliable constraints, particularly rainfall (Xie et al. 2004).

Ooyama (1990, 2001) proposed a very accurate form of moist thermodynamics for use in tropical models. This

accurate formulation of moist thermodynamics is not limited to modeling studies but can also be used in heat and

moisture budget studies. With the advent of GPS sondes and the recent availability of certain satellite data products,

this more accurate treatment of moist thermodynamics provides opportunities to refine our understanding of tropical

systems. This paper develops more accurate methods, which can utilize ancillary ground-based measurements and

satellite data products, for the diagnosis of heat and moisture budgets. The overall goal of this diagnostic technique

development is to provide the observational analysis community with an improved method for computing atmospheric

budgets, which has the additional advantage of having a complementary numerical modeling framework with the same

moist thermodynamics. This should allow better comparisons between satellite latent heating products and numerical

model simulations.
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2. Review of the standard theoretical basis for heat and moisture budget studies

In the standard theory (Yanai et al. 1973), mass conservation relations are written for only two forms of matter:

dry air and water vapor. In addition, a thermodynamic relation for the dry static energy is included. Let ρa denote the

mass density of dry air,1 ρv the mass density of water vapor, and s = cpaT + gz the dry static energy. The flux forms

of the prognostic equations for ρa, s, and ρv are given by2

∂ρa

∂t
+

∂(ρau)

∂x
+

∂(ρav)

∂y
+

∂(ρaw)

∂z
= 0, (1)

∂(ρas)

∂t
+

∂(ρaus)

∂x
+

∂(ρavs)

∂y
+

∂(ρaws)

∂z
= Lρa(c − e) + ρaQR, (2)

∂ρv

∂t
+

∂(ρvu)

∂x
+

∂(ρvv)

∂y
+

∂(ρvw)

∂z
= −ρa(c − e), (3)

where c is the rate of condensation, e the rate of evaporation, and QR the radiative heating rate. In the standard theory,

the latent heat of condensation L is usually taken to be a constant, in contrast to the more accurate treatment discussed

in section 3. Instead of working with the mass density of water vapor, ρv, the standard theory usually works with the

water vapor mixing ratio qv, which is related to the water vapor mass density by ρv = ρaqv. The equation for qv is

obtained by simply replacing ρv by ρaqv everywhere in (3).

Taking the horizontal average of (1)–(3), we obtain

∂ ρ̄a

∂t
+

∂(ρau)

∂x
+

∂(ρav)

∂y
+

∂(ρaw)

∂z
= 0, (4)

∂(ρas)

∂t
+

∂(ρaus)

∂x
+

∂(ρavs)

∂y
+

∂(ρaws)

∂z
= Lρa(c − e) + ρaQR, (5)

∂(ρaqv)

∂t
+

∂(ρauqv)

∂x
+

∂(ρavqv)

∂y
+

∂(ρawqv)

∂z
= −ρa(c − e). (6)

Making the usual approximations such as neglecting horizontal eddy flux terms involving u′s′, v′s′, u′q′
v, and v′q′

v,

and then making the approximations ρaws ≈ ρ̄aw̄s̄ + ρ̄aw′s′, and ρawqv ≈ ρ̄aw̄q̄v + ρ̄aw′q′
v, we can simplify (4)–(6)

to
∂ ρ̄a

∂t
+

∂(ρ̄aū)

∂x
+

∂(ρ̄av̄)

∂y
+

∂(ρ̄aw̄)

∂z
= 0, (7)

∂(ρ̄a s̄)

∂t
+

∂(ρ̄aūs̄)

∂x
+

∂(ρ̄av̄ s̄)

∂y
+

∂(ρ̄aw̄s̄)

∂z
= −
∂(ρ̄aw′s′)

∂z
+ L ρ̄a(c̄ − ē) + ρ̄aQ̄R, (8)

∂(ρ̄aq̄v)

∂t
+

∂(ρ̄aūq̄v)

∂x
+

∂(ρ̄av̄q̄v)

∂y
+

∂(ρ̄aw̄q̄v)

∂z
= −
∂(ρ̄aw′q′

v)

∂z
− ρ̄a(c̄ − ē). (9)

Using (7), the flux forms (8) and (9) can be converted to the advective forms

Q1 ≡
∂ s̄

∂t
+ ū
∂ s̄

∂x
+ v̄
∂ s̄

∂y
+ w̄
∂ s̄

∂z
= −
∂(ρ̄aw′s′)

ρ̄a∂z
+ L(c̄ − ē) + Q̄R, (10)

Q2 ≡ −L

(

∂ q̄v

∂t
+ ū
∂ q̄v

∂x
+ v̄
∂ q̄v

∂y
+ w̄
∂ q̄v

∂z

)

= L
∂(ρ̄aw′q′

v)

ρ̄a∂z
+ L(c̄ − ē), (11)

with the first equality in (10) serving as the definition of the apparent heat source Q1 and the first equality in (11)

serving as the definition of the apparent moisture sink Q2. If a network of upper air observations gives us ū, v̄, ρ̄a, s̄,

1A list of key symbols for the nonhydrostatic model is given in appendix A at the end of this paper.
2Although the standard theory is usually derived using pressure as the vertical coordinate, here we use the height coordinate, which allows direct

comparison with the more accurate theory presented in section 3.
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and q̄v, and if we compute w̄ from (7), then we can compute the apparent heat source Q1 from the large-scale terms in

(10) and the apparent moisture sink Q2 from the large-scale terms in (11). Subtracting (11) from (10), we obtain

∂ h̄

∂t
+ ū
∂ h̄

∂x
+ v̄
∂ h̄

∂y
+ w̄
∂ h̄

∂z
− Q̄R = Q1 − Q2 − Q̄R = −

∂(ρ̄aw′h′)

ρ̄a ∂z
, (12)

where ρ̄aw′h′ is the vertical eddy flux of moist static energy, with h defined by h = cpaT + gz + Lq = s + Lqv.

Assuming that w′h′ vanishes at the tropopause height z = zT , integration of (12) yields

ρ̄aw′h′
=

∫ zT

z

(

∂ h̄

∂t
+ ū
∂ h̄

∂x
+ v̄
∂ h̄

∂y
+ w̄
∂ h̄

∂z
− Q̄R

)

ρ̄a(z
′) dz′ =

∫ zT

z

(

Q1 − Q2 − Q̄R

)

ρ̄a(z
′) dz′. (13)

Once the entire vertical profile of the convective flux ρ̄aw′h′ has been found from (13), its surface value can be

checked against independent surface flux measurements (e.g., Nitta and Esbensen 1974). Cloud mass fluxes can then

be deduced by interpreting the convective flux in terms of a bulk cloud model or a spectral cloud model, as discussed

in the review article by Yanai and Johnson (1993).

Another useful integral constraint can be obtained from (11). Assuming that w′q′
v vanishes at the tropopause

height z = zT , integration of (11) leads to

Po = Eo −

∫ zT

o

(

∂ q̄v

∂t
+ ū
∂ q̄v

∂x
+ v̄
∂ q̄v

∂y
+ w̄
∂ q̄v

∂z

)

ρ̄a(z) dz, (14)

where Eo =

(

ρ̄aw′q′
v

)

o
is the surface evaporation and Po =

∫ zT

0
(c̄ − ē)ρ̄a dz is the precipitation. Thus, with an

estimate of Eo from surface data, precipitation can be diagnosed as a budget residual. In a similar fashion, (13) can be

rearranged to give a relationship for the column-net radiation

〈Q̄R〉 = 〈Q1〉 − 〈Q2〉 − So − LEo, (15)

where 〈(·)〉 =
∫ zT

o
(·) ρ̄a(z) dz and So is the surface sensible heat flux. In past studies, these budget-derived vertically

integrated quantities in (14) and (15) have been compared to independent estimates to gain insights into the quality of

the budget analyses (e.g., Johnson and Ciesielski 2000, Johnson et al. 2015).

In summary, the theoretical basis for the standard heat and moisture budget analysis is (1)–(3). This theoretical

basis fits nicely with what can be measured with a radiosonde sounding array: vertical profiles of the dry static energy

s̄, the water vapor mixing ratio q̄v, and the horizontal wind components ū and v̄. Although radiosondes cannot directly

measure the vertical component w̄, the continuity equation (7) can be used to compute the vertical component if the

horizontal components are observed with sufficient accuracy. An important breakthrough in this regard has been

the application of GPS technology to accurately determine balloon positions as a function of height and hence the

horizontal wind components. A nagging issue in many field programs has been the quality of the qv observations from

radiosondes. However, recently there have been significant advances with the development of small sensors constructed

from porous polymers, whose capacitance varies with humidity. When equipped with a small heating element, these

sensors can be kept free of ice and thereby yield accurate humidity measurements over the entire troposphere.3 Thus

advancements in radiosonde technology have greatly reduced measurement errors in the basic atmospheric fields which

plagued earlier budget studies (e.g., GATE and TOGA COARE).

A second source of uncertainty in budget analyses based on networks of sounding stations is related to data

sampling. Sampling errors come both from systematic errors associated with the network geometry (Ciesielski et

al. 1999) and from random errors of representativeness (Mapes et al. 2003). An example of the former error was

discussed by Katsumata et al. (2011), who found that a triangular sounding network was unable to properly capture

the divergence signal associated with the Rossby and inertia-gravity wave components of an equatorial flow. The

latter errors result from using point measurements from radiosondes and assuming that they are representative of a

space-time region comparable to the distance between soundings. In reality the space scales between stations and

timescales between sounding releases contain a wide variety of unresolved circulations and thermodynamic structures.

To reduce the impact of random sampling errors in budget calculations, analyses are typically presented as spatial

and temporal averages, which reduces such errors in a way that is roughly consistent with elementary N−1/2 sampling

3The Vaisala RS41 sonde is an example of this improved technology.
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statistics, where N is the number of observation times. For example, sampling errors would be halved for 1-day

averages (assuming 6-h analyses) and halved again for 4-day averages. By adjusting the state variables to be consistent

with vertical constraints, measurement and sampling errors are effectively minimized in the CVA budget approach

(Zhang and Lin 1997). Analysis uncertainties with the CVA method arise rather from sampling errors in the vertical

constraint fields (e.g., rainfall and column-net radiation).

In spite of past radiosonde limitations and network sampling errors, the application of the standard budget method

to tropical and subtropical observations has been extremely successful (Yanai et al. 1973, Ogura and Cho 1973, Nitta

and Esbensen 1974, Nitta 1975, Johnson 1980, Johnson and Young 1983, Johnson 1984, Gallus and Johnson 1991,

Yanai and Johnson 1993, Ciesielski et al. 1999, Zhang et al. 2001, Schumacher et al. 2007, 2008, Johnson et al. 2016)

and has provided a basis for many of the cumulus parameterizations used in numerical weather prediction models and in

general circulation models. The method is particularly well-suited for models which predict only the large-scale water

vapor field (and not the airborne condensate) and do not keep track of the details of precipitation. However, large-scale

models are becoming more complete in their physics, so it is important to discuss the theoretical shortcomings of the

standard approach. Three obvious ones are as follows.

• The moisture budget is based on water vapor only, thereby neglecting the advective and storage effects of cloud

and precipitating condensate. These effects can be significant, especially in situations with large variability in

fractional cloudiness.4 This shortcoming can be corrected by generalizing the water vapor budget equation to a

budget equation for the total airborne moisture (vapor and cloud condensate) and by including a separate budget

equation for precipitating condensate (water and/or ice). See (17) and (18) below.

• Because L is usually taken as a constant, ice effects are not included.5 A variable L should be included to capture

the latent heat of fusion. Also, a slow terminal velocity for ice and a faster terminal velocity for rain below the

melting zone should be used. This could lead to more accurate diagnosis of melting layer inversions in tropical

regions (Johnson et al. 1996).

• The thermodynamic principle is approximate since it is based on either dry static energy s or moist static energy

h. A more accurate principle can be developed based on the entropy density for a sample volume that contains

contributions from dry air, water vapor, cloud condensate, and precipitation. See (19) below.

In the next section we outline the basic framework for developing a more precise budget analysis technique which

overcomes the shortcomings in the theoretical foundation of the standard approach. This new technique makes use of

a more accurate model of the moist atmosphere, but it demands more data than radiosondes alone can provide. Thus,

it must be used in conjunction with recently available satellite data products such as TRMM and GPM.

3. A more accurate model of the moist atmosphere

Now consider atmospheric matter to consist of dry air, airborne moisture (vapor and cloud condensate), and

precipitation. Let ρa denote the mass density of dry air, ρm = ρv + ρc the mass density of airborne moisture

(consisting of the sum of the mass densities of water vapor ρv and airborne condensed water ρc), and ρr the mass

density of precipitating water substance.6 The total mass density ρ is given by ρ = ρa + ρv + ρc + ρr = ρa + ρm + ρr .

4Discussions of cloud water and rainwater storage effects are given by McNab and Betts (1978) and Gallus and Johnson (1991) for convective

cases over land and by Johnson (1980) for oceanic (GATE) cases. Rainwater storage effects can be significant when precipitation production has

ceased but existing rainwater continues to fall to the earth’s surface. Horizontal advective effects on condensed water can be important in the trailing

stratiform regions of tropical and midlatitude squall lines.
5Heat and moisture budget studies that include ice effects have been performed by Johnson and Young (1983) for tropical mesoscale anvil clouds

and by Gallus and Johnson (1991) for an intense midlatitude squall line.
6Above the freezing level, the precipitating water substance is assumed to be ice, while below the freezing level, it is assumed to be liquid. The

smoothness of the transition between liquid and ice is adjustable, as explained in Fig. 1.
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The flux forms of the prognostic equations for ρa, ρm, and ρr are given by7

∂ρa

∂t
+

∂(ρau)

∂x
+

∂(ρav)

∂y
+

∂(ρaw)

∂z
= 0, (16)

∂ρm

∂t
+

∂(ρmu)

∂x
+

∂(ρmv)

∂y
+

∂(ρmw)

∂z
= −Qr, (17)

∂ρr

∂t
+

∂(ρru)

∂x
+

∂(ρrv)

∂y
+

∂(ρrwr )

∂z
= Qr . (18)

Note that (16)–(18) generalize (1) and (3) in two regards: they include a budget equation for precipitating water

substance8 and an equation for total airborne water (vapor plus cloud) rather than vapor alone. Also note that these

three mass continuity equations contain two vertical velocities, w and wr , where w denotes the vertical velocity of dry

air and airborne moisture, and wr denotes the vertical velocity of the precipitating water substance, so thatw∞ = wr −w

is the terminal velocity of the precipitating water substance relative to the dry air and airborne moisture. The term Qr ,

on the right hand sides of (17) and (18), is the rate of conversion from airborne moisture to precipitation; this term

can be positive (e.g., the collection of cloud droplets by rain) or negative (e.g., the evaporation of precipitation falling

through unsaturated air).

To generalize (2) we consider the total entropy density of moist air. The total entropy density is σ = σa +σm+σr ,

consisting of the sum of the entropy densities of dry air, airborne moisture, and precipitation.9 Since the vertical

entropy flux is given by σaw + σmw + σrwr = σw + σrw∞, we can write the flux form of the entropy conservation

principle as
∂σ

∂t
+

∂(σu)

∂x
+

∂(σv)

∂y
+

∂(σw + σrw∞)

∂z
= Qσ, (19)

where Qσ denotes nonconservative processes such as radiation. For the details on how σ is computed, see Ooyama

(2001) and the brief discussion in section 4. Note that the vertical entropy flux by precipitation (which is assumed to

fall at the wet-bulb temperature) is incorporated through the σr (w + w∞) terms in (19).

Now define the mixing ratio of airborne moisture by qm = ρm/ρa, the mixing ratio of precipitation by qr = ρr/ρa,

the dry-air-specific10 entropy of moist air byS = σ/ρa, and the dry-air-specific entropy of precipitation bySr = σr/ρa,

so that we can replace ρm by ρaqm in (17), ρr by ρaqr in (18), σ by ρaS and σr by ρaSr in (19). Then, taking the

horizontal average of (16)–(19), we obtain

∂ ρ̄a

∂t
+

∂(ρau)

∂x
+

∂(ρav)

∂y
+

∂(ρaw)

∂z
= 0, (20)

∂(ρaqm)

∂t
+

∂(ρauqm)

∂x
+

∂(ρavqm)

∂y
+

∂(ρawqm)

∂z
= −Q̄r, (21)

∂(ρaqr )

∂t
+

∂(ρauqr )

∂x
+

∂(ρavqr )

∂y
+

∂(ρawqr + ρaw∞qr )

∂z
= Q̄r . (22)

∂(ρaS)

∂t
+

∂(ρauS)

∂x
+

∂(ρavS)

∂y
+

∂(ρawS + ρaw∞Sr )

∂z
= Q̄σ . (23)

7In modeling the cloudy, precipitating atmosphere, two conceptual errors can easily be made. The first is that, since moisture occurs in the three

forms ρv, ρc, ρr , then three separate prognostic equations for these fields are required in the analysis. However, only prognostic equations for ρm
and ρr are needed since ρm is entirely vapor (i.e., ρv = ρm and ρc = 0) in subsaturated conditions, while ρv = ρ

∗
v (T ) and ρc = ρm − ρ

∗
v (T ) in

saturated conditions. In other words, the partition of the predicted variable ρm into its components ρv and ρc is done diagnostically, as discussed

in section 4. The second conceptual error is that ρc and ρr should be grouped together as a single prognostic field, since both involve condensate.

However, this leads to considerable difficulty since ρc and ρr move at different vertical velocities. Thus, the number of prognostic equations

required to model a cloudy, precipitating atmosphere is seven (for u, v, w, ρa, ρm, ρr , σ), while the number required to model a dry atmosphere is

five (for u, v, w, ρa, σa).
8The treatment presented here can be considered a bulk microphysics scheme, since the entire precipitation field is described by the single

dependent variable ρr (x, y, z, t). For an interesting discussion of the treatment of hydrometeor sedimentation in bulk and hybrid bulk-bin

microphysics schemes, see Morrison (2012).
9Note that it is the entropy densities (σa, σm, σr ), not the specific entropies (sa, sm, sr ), that are additive.

10The term “dry-air-specific" is used because σ is divided by the dry air density ρa , instead of the total density ρ, i.e., the specific entropy S of

moist air is measured per unit mass of dry air.
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Now approximate (20)–(23) by
∂ ρ̄a

∂t
+

∂(ρ̄aū)

∂x
+

∂(ρ̄av̄)

∂y
+

∂(ρ̄aw̄)

∂z
= 0, (24)

∂(ρ̄aq̄m)

∂t
+

∂(ρ̄aūq̄m)

∂x
+

∂(ρ̄av̄q̄m)

∂y
+

∂(ρ̄aw̄q̄m)

∂z
= −
∂(ρ̄aw′q′

m)

∂z
− Q̄r, (25)

∂(ρ̄aq̄r )

∂t
+

∂(ρ̄aūq̄r )

∂x
+

∂(ρ̄av̄q̄r )

∂y
+

∂(ρ̄aw̄q̄r )

∂z
= −
∂(ρ̄aw′q′

r + ρ̄aw∞qr )

∂z
+ Q̄r . (26)

∂(ρ̄aS̄)

∂t
+

∂(ρ̄aūS̄)

∂x
+

∂(ρ̄av̄S̄)

∂y
+

∂(ρ̄aw̄S̄)

∂z
= −
∂(ρ̄aw′S′

+ ρ̄aw∞Sr )

∂z
+ Q̄σ . (27)

It is interesting to note that the sum of (24) through (26) yields the prognostic equation for the total density. When this

equation for the total density is integrated over the entire domain, we observe that the total mass in the domain is not

conserved (even though w̄ = 0 at the lower boundary) because of evaporation and precipitation at the lower boundary.

Using (24), the three flux forms (25)–(27) can be converted to the advective forms

∂ q̄m

∂t
+ ū
∂ q̄m

∂x
+ v̄
∂ q̄m

∂y
+ w̄
∂ q̄m

∂z
= −
∂(ρ̄aw′q′

m)

ρ̄a ∂z
−

Q̄r

ρ̄a
. (28)

∂ q̄r

∂t
+ ū
∂ q̄r

∂x
+ v̄
∂ q̄r

∂y
+ w̄
∂ q̄r

∂z
= −
∂(ρ̄aw′q′

r + ρ̄aw∞qr )

ρ̄a ∂z
+

Q̄r

ρ̄a
. (29)

∂S̄

∂t
+ ū
∂S̄

∂x
+ v̄
∂S̄

∂y
+ w̄
∂S̄

∂z
= −
∂(ρ̄aw′S′

+ ρ̄aw∞Sr )

ρ̄a ∂z
+

Q̄σ

ρ̄a
. (30)

Equations (24) and (28)–(30) form the basis for budget studies with the improved form of moist thermodynamics.

By assuming that ρ̄aw′S′
+ ρ̄aw∞Sr vanishes at the tropopause height z = zT , integration of (30) yields

ρ̄aw′S′
+ ρ̄aw∞Sr =

∫ zT

z

(

∂S̄

∂t
+ ū
∂S̄

∂x
+ v̄
∂S̄

∂y
+ w̄
∂S̄

∂z
−

Q̄σ

ρ̄a

)

ρ̄a(z
′)dz′. (31)

Equation (31) should be compared to (13), which can be considered an approximation of (31) in the sense that it

neglects vertical transport of entropy by precipitation and that it uses moist static energy instead of the moist entropy

S. The fluxes on the left hand sides of (13) and (31) are often considered the primary results of the large-scale heat

and moisture budget analysis. With the aid of a cloud model, these moist static energy or moist entropy fluxes can

be interpreted in terms of cloud mass fluxes and the thermodynamic properties of the air inside the clouds. Note

that, while the large-scale terms in (11) and (13) are determined entirely from radiosonde observations, the large-scale

terms in (28)–(30) require more than just radiosonde observations. Storage and advection of airborne cloud condensate

(which may be important at upper levels when cirrus occurs) and precipitation are included, as is the vertical entropy

flux by precipitation.

The addition of (28) and (29) yields

∂(q̄m + q̄r )

∂t
+ ū
∂(q̄m + q̄r )

∂x
+ v̄
∂(q̄m + q̄r )

∂y
+ w̄
∂(q̄m + q̄r )

∂z
= −
∂(ρ̄aw′q′

m + ρ̄aw
′q′

r + ρ̄aw∞qr )

ρ̄a ∂z
. (32)

Assuming that w′q′
m + w′q′

r + w∞qr vanishes at the tropopause height z = zT , integration of (32) yields

Po = Eo −

∫ zT

0

(

∂(q̄m + q̄r )

∂t
+ ū
∂(q̄m + q̄r )

∂x
+ v̄
∂(q̄m + q̄r )

∂y
+ w̄
∂(q̄m + q̄r )

∂z

)

ρ̄a(z)dz, (33)

where Eo = (ρ̄aw′q′
m)o is the surface flux of airborne moisture and Po = −(ρ̄aw′q′

r + ρ̄aw∞qr )o is the surface

precipitation.11 Equation (33) should be compared to (14), which can be considered an approximation to (33). While

(14) diagnoses rainfall based only on water vapor data, (33) requires both water vapor and condensed water data, i.e.,

11Note that Eo = (ρ̄aw′q′m)o and Eo = (ρ̄aw′q′v )o are identical unless there is cloud (or fog) at the surface. The difference between Po and

Po is more subtle because the improved diagnostic model explicitly tracks the falling precipitation while the standard model does not.
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the concept of an apparent moisture sink is more general. During periods of high fractional cloudiness this additional

information could improve the budget analyses of rainfall. For selected satellite overpasses when vertical profiles

of airborne condensed water are available, one could diagnose rainfall using both (14) and (33) and compare these

analyses with the satellite derived rainfall product. By doing such comparisons for a variety of convective situations,

one could learn how different convective conditions affect budget-derived rainfall analyses.

In summary, we have developed a generalized diagnostic budget method based on a more accurate model of

the moist atmosphere. Evaluation of budgets using these more precise techniques is contingent on the availability of

certain data products, namely, vertical profiles of airborne condensed water and precipitation from ground-based and/or

satellite observations. This raises the possibility of reexamining data from previous field programs to understand what

new physical processes might be revealed by the more accurate budget methods. Finally we note that the symbols

Q1 and Q2 and the terms “apparent heat source" and “apparent moisture sink" have not been used in section 3. The

primary reason for this is that, while the prognostic thermodynamic principle in section 2 involves enthalpy (the cpaT

part of the dry static energy), the prognostic thermodynamic principle used here in section 3 involves the moist entropy

(e.g., equations (19), (27), (30)) rather than enthalpy. While it is possible to convert from the entropy formulation to

the enthalpy formulation, the analysis is somewhat tedious. Thus, while there is a difference in physical detail between

section 2 and section 3, there is also a difference in focus, with section 3 focusing on the “apparent entropy source"

and section 2 focusing on the “apparent heat source."

4. Nonhydrostatic model of the moist atmosphere

In addition to the development of more accurate budget diagnostics, we can use a more accurate nonhydrostatic

model of moist convection to simulate the convective transports observed in the diagnostic studies. The models that

have been used are the ones described by Ooyama (2001) for squall lines and by Hausman et al. (2006) for hurricanes.

One advantage of this approach is that the formulation of moist thermodynamics in the diagnostic studies and in the

numerical models is identical. The numerical models have seven prognostic equations—three momentum equations

and the four conservation relations (16)–(19). The diagnostic relations for the models are

ρ = ρa + ρm + ρr, (34)

S2(ρa, ρm + ρr,T2) = σ, (35)

σr = ρrC(T2), (36)

S1(ρa, ρm,T1) = σ − σr, (37)

T = max(T1,T2), (38)

pa = ρaRaT, (39)
{

ρv = ρm, ρc = 0, pv = ρvRvT, if T = T1 > T2 (absence of cloud condensate),

ρv = ρ
∗
v(T ), ρc = ρm − ρv, pv = E(T ), if T = T2 > T1 (saturated vapor),

(40)

p = pa + pv, (41)

which introduce the following additional diagnostic variables: the total mass density ρ, the thermodynamically possible

temperatures T1 and T2, the actual temperature T , the partial pressure of dry air pa, the partial pressure of water vapor

pv, and the total pressure p. The functions S1(ρa, ρm,T ) and S2(ρa, ρm,T ) are given by

S1(ρa, ρm,T ) = ρasa(ρa,T ) + ρms
(1)
m (ρm,T ), (42)

S2(ρa, ρm,T ) = ρasa(ρa,T ) + ρms
(2)
m (ρm,T ), (43)

where the specific entropy of dry air is

sa(ρa,T ) = cva ln

(

T

T0

)

− Ra ln

(

ρa

ρa0

)

, (44)

the specific entropy of airborne moisture in state 1 (absence of cloud condensate, so that ρv = ρm and ρc = 0) is

s
(1)
m (ρm,T ) = cvv ln

(

T

T0

)

− Rv ln

(

ρm

ρ∗
v0

)

+

L(T0)

T0

, (45)
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Figure 1: The top panel shows the saturation vapor pressure over ice, Ei (T), and the saturation vapor pressure over water, Ew (T),

with Ew > Ei for colder temperatures and Ei > Ew for warmer temperatures. These empirical curves are based on laboratory

results. They have been merged into a single synthetic profile with a sharp transition at 0◦C (thick solid curve) and into a single

synthetic profile with a gradual transition centered at −3◦C (dashed curve). The Ew curve and the two synthetic curves are so close

that they are indistinguishable on the right side of the upper panel. The lower panel shows the corresponding L(T) curves, which are

calculated from the Clausius-Clapeyron equation in the form L(T) = RvT2[d ln E(T)/dT]. The difference between the asymptotic

values Li and Lw is the latent heat of fusion. Adapted from Ooyama (1990).

and the specific entropy of airborne moisture in state 2 (saturated vapor, so that ρv = ρ
∗
v(T ) and ρc = ρm − ρ∗v(T )) is

s
(2)
m (ρm,T ) = C(T ) +

D(T )

ρm
= C(T ) +

ρ∗v(T )

ρm

L(T )

T
, (46)

with

C(T ) = cvv ln

(

T

T0

)

− Rv ln

(

ρ∗v(T )

ρ∗
v0

)

+

L(T0)

T0

−
L(T )

T
(47)

denoting the entropy of a unit mass of condensate at temperature T (note that C(T0) = 0), and

D(T ) =
dE(T )

dT
= ρ∗v(T )

L(T )

T
(48)

denoting the gain of entropy per unit volume by evaporating a sufficient amount of water, ρ∗v(T ), to saturate the volume

at temperature T .

The thermodynamic diagnosis at each spatial point can be interpreted conceptually as the following input/output

process:

Input {ρa, ρm, ρr, σ} ⇒ Output {ρ,T1,T2, σr,T, ρv, ρc, pa, pv, p} .
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Specifically, starting with the values of the prognostic variables ρa, ρm, ρr, σ, the thermodynamic diagnosis proceeds in

the order given by (34)–(41), i.e., determination of the total density ρ from (34), determination of the thermodynamically

possible temperature T2 from (35), the entropy density of precipitation from (36), the thermodynamically possible

temperature T1 from (37), the actual temperature T of the gaseous matter12 from (38), the partial pressure of dry air

from (39), the water vapor density ρv, cloud condensate density ρc , and water vapor partial pressure pv from the

appropriate alternative in (40), and the total pressure p from (41). Note that all the other required thermodynamic

functions, such as C(T ), D(T ), ρ∗v(T ), etc., can be determined from E(T ), once it is specified. If E(T ) is specified as

Ew(T ) for all T , then the effects of the latent heat of fusion are not included. If a synthesized E(T ) is obtained from

Ew(T ) and Ei(T ), then the effects of the latent heat of fusion are included.

To summarize, the procedure for advancing from one time level to the next consists of computing new values

of the prognostic variables ρa, ρm, ρr, σ, u, v,w from (16)–(19) and the three momentum equations. The diagnostic

variables required for the prognostic stage are determined by sequential evaluation of (34)–(41). Since they are not

essential to our discussion here, we have omitted the parameterization formulas for the terminal fall velocity, w∞, and

the source terms Qr and Qσ .13

It is interesting to note how the variation of L with temperature is incorporated into this model. The idea is easily

understood by reference to Fig. 1, the top panel of which shows the saturation vapor pressure over ice, Ei(T ), and the

saturation vapor pressure over water, Ew(T ). Also shown are two merged E(T ) profiles, one with a sharp transition

centered at 0◦C (solid curve) and one with a gradual transition centered at −3◦C (dashed curve). The lower panel of

Fig. 1 shows the two corresponding L(T ) curves, which have been calculated from the Clausius-Clapeyron equation in

the form L(T ) = RvT
2[d ln E(T )/dT ]. The choice of the solid curve would produce model results with a sharp melting

layer, while choice of the dashed curve would produce a melting layer several times as thick.

At present it is not feasible to numerically integrate such a nonhydrostatic “full physics" model over the whole

globe with 1–2 km resolution. However, it is possible to perform such high resolution integrations over the limited

area of a single tropical disturbance. Such integrations advance the art of tropical modeling to a new level that involves

much less physical parameterization. An example of a high resolution simulation using this model is shown in Fig. 2,

which depicts the development of convection in an environment at rest (Garcia 1999). For this simulation, the domain

consists of 5 nested grids over a total horizontal distance of 1152 km. The finest (central) grid in this domain spans 96

km with a horizontal grid spacing of 0.5 km. The height of the domain is 18 km, with a constant vertical resolution of

750 m on all grids. The time integration for this simulation uses a semi-implicit formulation of the leapfrog method

with a time step of 2.5 seconds on the finest grid. The initial background for this simulation consists of a mean hurricane

season sounding which has been modified slightly to include higher relative humidity in the lower levels (surface to

approximately 700 hPa) in order to better represent disturbed tropical conditions. The initial perturbation employed

here was a thermal anomaly of T ′
= +3K, centered at x = 0, z = 0 and with an overall width of 32 km. This figure

depicts the development of the resulting convective cell at 1 minute intervals between 26 and 31 minutes of a 1 hour

simulation. The line contours in Fig. 2 represent the dry-air-specific entropy of moist air as calculated by S = σ/ρa.

The contour interval is 10 J kg−1 K−1. The dry-air-specific entropy of moist air can also be interpreted in terms of

equivalent potential temperature θe through the definition

θe = T0eS/cpa ⇐⇒ S = cpa ln(θe/T0).

Thus, S = 200 J kg−1 K−1 (the two neighboring green contours near z ≈ 4 km in the cloud environment) correspond to

θe = 333K, while the S = 250 J kg−1 K−1 contour near the surface in most of these panels corresponds approximately

to θe = 348K. The blue shaded regions indicate the cloud water and precipitation content of the air: the lightest

blue corresponds to cloud water in any concentration, while the darker blue shades represent precipitation content at

intervals of 0.5 g kg−1. An interesting feature of Fig. 2 is the way in which the high θe contours (or, equivalently, the

high h contours) near the surface are drawn up in the convective plume during the first two minutes. These contours

then close off and a bubble of high θe air is carried upward. Another interesting feature is the cap instability that

12Note that there is a physical situation in which not all the matter in a model grid volume has the same temperature. This occurs when precipitation

is falling through cloud-free air. All the gaseous matter has temperature equal to T1, while the precipitation has temperature T2, which is lower than

T1. This situation is accurately modeled by the diagnostic analysis (34)–(41) and is consistent with our common experience of cold raindrops falling

on our skin.
13We simply note that the terminal fall velocity w∞ of precipitating water or ice is parameterized in terms of ρr , ρa and T , with a slow terminal

velocity for ice when T is below the freezing point and a larger terminal velocity for rain when T is above the freezing point, and that the rate of

conversion to precipitation Qr is usually parameterized as the sum of the rates of autoconversion (dependent on ρc and ρa ), collection (dependent

on ρc , ρr and ρa ), and evaporation (dependent on ρv , ρr and T ).
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Figure 2: Development of a convective cell at one minute intervals using the nonhydrostatic moist model developed by Ooyama

(1990, 2001). Model time is specified in the upper right of each panel, contour lines indicate the specific entropy of moist air, and

blue shading indicates cloud boundaries and regions of precipitation. Note the transition from a plume of high θe air to a bubble

structure below 5 km. Adapted from Garcia (1999).

develops near z ≈ 13 km, above the rising convective plume. The ρ̄aw′S′ flux in (31) can be considered to be the

result of a field of such convective clouds in various stages of their life cycles.

Numerous simulations have been performed with this model. These include simulations of tropical squall line

systems (Ooyama 2001), and simulations of tropical cyclone development (Hausman et al. 2006) using an axisymmetric

version of the model. In this regard it is interesting to note that such model simulations can lead to a better understanding

of CAPE (or the cloud work function, which is a more general concept) and its generation by large-scale processes.

To see why further understanding of convective energetics is needed, consider the following question. How do we

define CAPE? The theory just described gives us at least eight ways! We can define a reversible adiabat (RA) with all

condensate carried along with the parcel, and a pseudoadiabat (PA) with all condensate removed. Each of these can be

defined with ice (wi) or with no ice (ni). Thus, we have four temperature profiles and four virtual temperature profiles

for RA.wi, PA.wi, RA.ni, PA.ni. This gives eight ways of computing CAPE. Of course, we can also define CAPE in a

myriad of ways which lie somewhere between RA and PA.
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5. Concluding remarks

The main focus of our discussion has been the development of new, more accurate methods for the diagnostic

analysis of heat and moisture budgets. The physical model which serves as the basis for this discussion is the

nonhydrostatic moist model, consisting of (16)–(19) and three momentum equations. In this model, pressure is not

used as one of the prognostic variables, since it is not a conservative property and its use as a prognostic variable would

lead to an approximate treatment of moist thermodynamics. Rather, the prognostic variable for the thermodynamic

state is σ, the entropy of moist air per unit volume, with temperature and total pressure (the sum of the partial pressures

of dry air and water vapor) determined diagnostically. There are several unique aspects of this model which are worth

noting. (1) The model dynamics are exact in the sense that there is no hydrostatic approximation. (2) The connection

between dynamics and thermodynamics is through the gradient of pressure, which includes the partial pressures of

dry air and water vapor. (3) The first law of thermodynamics is expressed in terms of σ, the entropy density of moist

air; all the usual approximations associated with moist thermodynamics are thereby avoided. (4) There is no cumulus

parameterization; the frontier of empiricism is pushed back to the microphysical parameterization of the precipitation

process through w∞ and Qr . (5) The model is modular in the sense that ice can be included by specifying E(T ) to be

synthesized from the saturation formulas over water and ice.

In spite of the above unique aspects, the model thermodynamicsshould not be regarded as “exact." For example, the

effects of the latent heat of fusion are always recognized in the same temperature interval (see Fig. 1), whether freezing

is occurring on ascent or melting is occurring on descent. Hence, highly supercooled water in intense thunderstorm

updrafts cannot be simulated. In any event, the concepts presented here open up the possibility of coordinated modeling

and observational budget studies based on the same moist thermodynamic principles. At present, this research path

remains largely unexplored.
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APPENDIX A

List of Key Symbols for the Nonhydrostatic Model

Constants:

Ra gas constant of dry air

Rv gas constant of water vapor

cva specific heat of dry air at constant volume

cvv specific heat of water vapor at constant volume

cpa = cva + Ra specific heat of dry air at constant pressure

cpv = cvv + Rv specific heat of water vapor at constant volume

κ = Ra/cpa

pa0 reference pressure, 100 kPa

T0 reference temperature, 273.15 K

ρa0 = pa0/(RaT0) reference density for dry air

ρ∗
v0
= ρ∗v(T0) mass density of saturated vapor at T0

Velocities (m s−1):

(u, v,w) velocity of dry air and airborne moisture

wr vertical velocity of precipitation (relative to earth)

w∞ = wr − w terminal velocity of precipitation (relative to dry air and airborne moisture)

Pressures (Pa):

pa partial pressure of dry air

pv partial pressure of water vapor

p = pa + pv total pressure
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Temperatures (K):

T1 thermodynamically possible temperature (absence of cloud condensate)

T2 thermodynamically possible temperature (saturated vapor)

T = max(T1,T2) temperature

θe = T0eS/cpa equivalent potential temperature

Mass Densities (kg m−3) and Mixing Ratios:

ρa mass density of dry air

ρv mass density of water vapor

ρc mass density of airborne condensate (water droplets or ice crystals)

ρr mass density of precipitating water substance (liquid or ice)

ρm = ρv + ρc mass density of airborne moisture (vapor plus airborne condensate)

ρ = ρa + ρm + ρr total mass density (dry air plus airborne moisture plus precipitation)

qv = ρv/ρa mixing ratio of water vapor

qm = ρm/ρa mixing ratio of airborne moisture

qr = ρr/ρa mixing ratio of precipitation

Specific Entropies (J kg−1 K−1):

sa specific entropy of dry air

s
(1)
m specific entropy of airborne moisture in state 1 (absence of cloud condensate)

s
(2)
m specific entropy of airborne moisture in state 2 (saturated vapor)

sm specific entropy of airborne moisture (vapor and cloud)

sr specific entropy of condensed water (cloud or precipitation)

S = σ/ρa dry-air-specific entropy of moist air

Sr = σr/ρa dry-air-specific entropy of precipitation

Entropy Densities (J m−3 K−1):

σa = ρasa entropy density of dry air

σm = ρmsm entropy density of airborne water substance

σr = ρr sr entropy density of precipitating water substance

σ = σa + σm + σr total entropy density

S1(ρa, ρm,T ) entropy density function of dry air and airborne moisture (absence of cloud

condensate)

S2(ρa, ρm,T ) entropy density function of dry air and airborne moisture (saturated vapor)

Defined Functions of Temperature:

L(T ) = RvT
2(d ln E(T )/dT ) latent heat of vaporization, computed from the Clausius-Clapeyron equation

L(T )/T gain of entropy by evaporating a unit mass of water at T

C(T ) entropy of a unit mass of condensate at T , as measured from the reference

state T0

D(T ) = dE(T )/dT gain of entropy per unit volume by evaporating a sufficient amount of water,

ρ∗v(T ), to saturate the volume at T

Ew(T ) saturation vapor pressure over water

Ei(T ) saturation vapor pressure over ice

E(T ) saturation vapor pressure, which may be synthesized from the saturation

vapor pressures over water and ice

ρ∗v(T ) = E(T )/(RvT ) mass density of saturated vapor
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